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Abstract

Y

The problem addressed in this paper is heuristicaily-guidad learming of finite automata
tfrom examples. Given positive sample strings and nesgative sample strings. a finite
automaton is generated and incrementally refined to accept all positive samples but no
negative samples. This paper describes some experiments in appl,ing hill-climbing to
modify finite automata to accept a-desired regular language. We show that many problems
can be solved by this simple method. We then describe the method hcw to "re-construct”
a finite automaton if the positive and/or negative samples are slightly altered. without
starting from the beginning. Finally, we have an actual system. RR: Regular set
Recognizer, that learns to recognize a regular set from the samples that are given by a
human teacher one by one.
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INTRODUCTION

1. Introduction

Consider the following problem:

Describe the property that all strings in the right-list have but na string in the wrong-list has. Does a
string (1 1 0 1) have this property? You may answer the question by using any of the following:
English, a regular expression, or a finite automaton.’

right-li wrong-

0 (10)

(1) (101)

) (010)

Q1) (1010)

1) (1110

(0 0) (1011)
(100) (100017)
(110 (111010)
(111) (1001000)
(000) (171111000)
(100100) (0111001101)

(110000011100001) (11011100110)
(111101100010011100) .

R might be possible to construct the finite automaton by a “typical” schema-filling method (i.e.,
finding rough property in the samples first, comparing these strings carefully). However, in this paper,
we try to construct the finite automaton directly by searching in the problem space (i.e., the sst of ail
finite automata) uaing hill-climbing, rather than by analyzing the sampies carefully. One of the biggest
advantages of hill-climbing is its simplicity, that is, we do not have to know our problem space well,
while a "typical” schema-filling method requires us to provide all possible schemas, and therefore to
know everything about our problem space. We shall see that hill-climbing works much better than
expected in our problem space, and in fact soived most of the problems.

1.1 The finite automata used in this paper

We restrict our problem domain to be only over {1,0}'. Furthermore, since every non-deterministic
finite automaton has an equivaient deterministic finite automaton (see [Hopcroft 79]), we deal only
with deterministic finite automata, that is, there is at most one 1-arrow and ane 0O-arrow from each
state. Thus, in this paper, the terms "finite automaton”, "automaton” or "machine” all mean
"deterministic finite automaton”. Given a string 8, if there is a transition from the initia/ state to any of
the linal states, then s is accepted by the machine, otherwise s is rejected. For example, the machine
of the sample problem is shown in figure 1-1.

1Thcmbmm(1 +m.ﬁMmoddwmdcomcuﬁn0’aAFTERmoddmdemm1‘s.
Therefore (1 10 1) has the property.
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INTRODUCTION

Figure 1-1: The machine of the sample problem

( @ 'sarefingi states. )

Each machine with n states is denoted by the following form:
((A,B,F)(AuB,LF)....(A,B,F))
Each (A, B, F) corresponds to the state i, and A, and B, indicate the destination states of the 0-arrow
and the 1.arrow trom the state i, respectively. |fA|orB||szero.menmerelsnoo-arrowor1 arrow
from the state i, respectively. F; indicates whether state i is one of the final states or not. If F, is equal
tot, thestateusoneofmeﬁnalstabs. ThennMstanmalwaysstm! Formstance.ﬁqure1 1is
represented as follows:

(1213 11(400)(341)).

1.2 The probliem

We now are ready to describe the probiem precisely. Given & right-list (a set of positive sample
strings) and a wrong-list (a sst of negative sampie strings), we can think of the following three tasks:

1. To find a machine that accepts all strings in the right-list but none in the wrong-list.

2 To find a machine with n states that accepts all strings in the right-list but none in the
wrong-fist. _

3. To find the machine with fewest states (simplest machine) that accepts all strings in the
right-list but none in the wrong-list.

The first task is trivial bocamomcan easily construct a trivial machine that accepts exactly all
strings in the right-list but nothing eise.2 The second task and the third task are shown to be NP-
complete problems by [Goid 74). We call the second task construction of finite automata, and the
third task simpiification of finite automata.

1.3 Past Work

Feldman, Gips, Horning and Reder [Feidman 67] [Feldman 68] built a system that constructs a
grammar in BNF from given examples. It takes only positive examples, and its problem domain is
context-free languages. We quote a couple of sampile runs of this system from [Feldman 69] , to make
clear how their system worked.

Zan example of the trivial machine wil be found in section 3-4-2.

. e e e




INTRODUCTION

Figure 1-2: Sample Strings and BNF grammar produced by Feldman's system
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Their system first constructs a "trivial” grammar, and then simplifies it. As we can see, their system
requires us to provide nicely-chosen exampies, and itcannotsolvefrom poor!yagamzedexamplu
such as the problem we introduced at the beginning.

Bierman and Feldman then buiit a system that constructs a finite automaton from given examples.
Although it takes only positive exampies, they showed an application to the case where both positive
and negative examples are given. Their aigorithm aiso requires nicely-chosen examples, and they
showed the method to choose the examples from a regular set "nicely”, so that it always turns out the
simplest machine. However if the exampies are not nicely-chosen, as in the problem we introduced at
the beginning, their system hardly turns out the simpiest machine.

Apart from the grammatical inference, thers has been a good deai of work on discovery of a
regularity or a common pattern in the given examples that are not necessarily nicely-chosen
( [Langley 81a] [Langley 81b] [Buchanan 76] [Hayes-roth 77] [Michalski 73] [Vere 75] [Winston 70}).
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INTRODUCTION

1.4 Overview of the Paper

In the rest of this chapter, we present the 7 sampie problems, that we will consider throughout this
paper (7 sample problems and their inverses).

in chapter 2, we present the resuit. of an experiment jn constructing finite automata with n states
using hill-climbing, in particular, we let n = 8. We shail see that all 14 sample problems can be solved
by this method.

In chapter 3, we present the result of an experiment in simplifying the ﬁnit_e automata which we
have found in chapter 2, also using hill-climbinj. We shall see that we can find the simpliest machine
for mast of the problems by this method.

in chapter 4, we discuss re-construction of finite automata, that is, how to re-construct a finite
automaton if the right-list and the wrong-list are slightly altered. We might not want to construct it
from the beginning. Rather, we want to construct the new machine by modifying the previous
machine.

Finally, we have an actual system called Regu/ar set Recognizer [RR}, using the techniques above.
RR learns to recognize a regular set, given examples by a human "teacher”. We present several
sampie runs as well as a user's manual, in chapter 5.

1.5 Sample Probiems

1.5.1 Sampie Problems
Throughout this paper, we consider the following 7 sample problems.
Problem 1
right-list wrong-list
0 )
(1) 10
1y ‘ ‘ 1)
(111) (0]
(1111) ©11)
(t1111) (110
111111) (11111110)
(1111111) (10111111)
11111111
s

USSR 3




e e e e A e ot

INTRODUCTION

Probl

right-list

0

(10

(1010)

(101010)
(10101010)
(10101010101010)

right-list

0

Q)

(o)

@1

aMn

o9

(100

(110

(1t1)

(000)

(100100)
(110000011100001)
(1111011060010011100)

Broblem 4

right-list

0

1))

(+)]

(10

@1

00)

(100100)
(001111110100
(0100100100) -
(11100

010

3his problem wes introduced st the very beginning.

wrong-list
(1)

0)

(11)

00)

. (01)

(101)

(100)
(1001010)
(10110)
(116101010)

wrong-list
(10
(101)
010
(1010)
(1110
(t011)
(10001)

(111010

(1001000)
(11111000
(0111001101)
(11011100110)

wrong-list

(000)

(11000)

(000YV)

(000000000)
(11111000011)
(1101010000010111)
(1010010001)

(0000)

(00000)
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right-list

0

(11

(00)

(1001)

(0101)

(1010)
(1000111101)

(1001100001111010)

111111)
(0000)

right-list

0

(10)

@1

(1100)
(101010)
(t11)
(000000)
(10111)
©11110t111)
(100100100)

right-list

0

1Y)

)

(10)

@1)
(11111)
©00)
(00110011)
(©0101)

(0000100001111)

00100
011111011111)

(00)

INTRODUCTION

Pr
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wrong-list

(1)

@

(111)

(010)
(000000000
(1000)

01)

(10
(1110010100)
0101111111710)
QO001)

©011)

wrong-list

0))

©)

(11

o0

(101

(@t11)
(11001).
(t1111)
(00000000)
(010111)
(10111101111)
(1001001001)

wrong-list

(1010)
(00110011000)
(0101010101)
(1011010
10101)
(010100)
(101001)
(100100110101)




INTRODUCTION

1.5.2 Solution of Sample Problems

The solution of these problems are:

1.1
2(10)

3. any string without an odd number of consecutive 0's AFTER an odd number of
consecutive 1's.

4. any string without more than 2 consecutive 0's.

5. any string of even length which, making pairs, has an odd number of (0 1) or (1 0)'s.

6. any string such that the difference between the numbers of 1's and O's is 3n. -

70101,

1.5.3 Finite Automata of Solutions

The machines corresponding to these solutions are as follows.
Solution of Problem 1

—— . » ; T . o o P JNM
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Solution of Problem §
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1.5.4 Inverse Problems

We also consider the inverse problems of these sampie problems. The inverse problems are
created by exchanging the right-list and wrong-list. We use these 14 problems in our experiments
and refer to the inverse problem of problem 1 as problem 1-, the inverse problem of problem 2 as
problem 2-, and so on.

Solution of Problem 1-
1 ,0

e
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CONSTRUCTION OF FINITE AUTOMATA

- 2. Construction of Finite Automata

In this chapter, we describe .an experiment in constructing a finite automaton with n states from a
given right-list and a wrong-list, using hill-climbing. In particular, we let n equal 8. We shali see that
each of the 14 problems can be soived in at most a few thousands steps.

2.1 Algorithm
The hill-climbing algorithm of this experiment is shown in figure 2-1.

Figure 2-1: Flowchart of the Hill-Climbing

M:= random

M’ : = mutate(M)

We first construct a random machine with 8 states. We next make a copy of this machine, where the
copy is slightly altered from the original by an operator mutate. We compare the new machine with:
the original by an evaluation function E. The better machine is cailed current generation and we
make a copy of this machine, and so forth. The worse machine is simply discarded. The operator
mutate and the evaluation function E are defined more precisely in the following.

Operator mutate: Taking a machine (A, B,.F).. (A B F, )) as its argument, the operator
mutate chooses one digit randomly, and roplaces it by another dlglt. That is, the mutation in our
algorithm is randomly one of the following: delete an arrow, insert an arrow, change the destination

‘0 :(Ai =<8;0 -(Bi =<8 and0 -(Fi =l

12




CONSTRUCTION OF FINITE AUTOMATA
Evaluation Function E: The evaluation function E takes a machine as its argument and returns r
- w, where r is the number of strings in the right-list accepted by the machine, and w is the number of

ot an arrow to another destination, make a non-final state into a final state, and make a final state into
strings in the wrong-list accepted by the machine. If rr - w< 0 then it returns 0.

a non-final state.
2.2 Resulits
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and 6 indicates the cumulative number of generation. The final machine of this trace accepts all
We show the results for the other 13 problems in figure 2-4.

desired machine. Each line corresponds to the current generation M. The column E indicates E(M),
strings in the right-list but none in the wrong-list of problem 3 (figure 2-3).
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‘ ‘ Figure 2-3: The final machine of problem 3

((0 1 1)(2 8 1)(7 4 1)(8 0 0)(7 2 1)(1 6 0)(7 7 0)(8 8 0)) 98
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CONSTRUCTION OF FINITE AUTOMATA

Final Machine of Problem 2

((#11)(331)(120)(711)(601)(400)(03 1)(121)) 442

15



CONSTRUCTION OF FINITE AUTOMATA

((631)(88 1)(180)(780)(470)(571)(831)(410)) 277

16
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CONSTRUCTION OF FINITE AUTOMATA

((3 80)(030)(371)(341)(031)(710)041)(000)) 300
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((360)(485 1)(1 40)(240)(871)(230)(081)(000)) 1939
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CONSTRUCTION OF FINITE AUTOMATA

(«
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CONSTRUCTION OF FINITE AUTOMATA
2.3 Discussion

2.3.1 Hill-Climbing vs. Exhaustive Search

To see how effectively our hill-climbing algorithm has performed, we compare our method with an
exhaustive search. There are (9 x 9 x 2)% = about 5 x 10'7 machines in our problem space. We now
wvant ta know the number of the desired machines in our problem space, so that we can calculate the
expected number of steps until the exhaustive algorithm finds the first desired machine. This can be
done by the following "sampling" method: take one machine in the problem space randomily, and test
it this machine is the desired machine; repeat this procedure 100,000 times.

We show the expected number of steps using the exhaustive search calculated by this procedure in
figure 2-5. Aithough the exhaustive search works better on "easy” prablems, it is obvious in general
that our hill-climbing works much better than the exhaustive search.

Figure 2-5: The number of Steps to get the desired machine

Problem HiT1-Climbing Exhaustive-Search

P1 g8 33

P2 134 315

P3 2082 _ > 50000

Pe 442 12600

Ps 1768 > 50000

Pe 217 . 50000

PT 208 50000

L O 300 167

p2- 89 1852

P3- 1936 > 50000 T
Pe- 248 > 50000

PS- 1844 > 80000

pPg- ase > 80000

P7- 3728 > 50000

2.3.2 Result with Different Numbers of States

So far, we fixed the number of states to be 8. In this section, we shall try the same experiment with
different numbers of states (4 - 10). Figure 2-8 shows the result of this experiment. In the table, "---*
indicates "it could not solve within the given time”. This can happen when the hill-climbing algorithm
climbs a “local hill”. This table implies that the number of states n should be reasonably large to
‘avoid climbing a local hill, and we can hardly get the simplest machine by this method. We shall,
however, see that we can simplify the machine with 8 states that we have gotten in this chapter, so
that it becomes the simplest machine.

21
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CONSTRUCTION OF FINITE AUTOMATA

Figure 2-6: The Number of States and Runtime [sec.]
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SIMPLIFICATION OF FINITE AUTCATA

3. Simplilicetion of Finite Automzta

In the previous chapter, we saw that our hill-climbing method successfully produced a machine
that accepts all strings in the right-list but no string in the wrong-list. However, the final machine of
the result of problem 2, for example, does not accept our desired regular set (1 0)'. For instance, it
does accept a string (1 1 0 0), which is not in (1 0)'. We therefore want the machine to be
"generalized” so that it accepts exactly (1 0)'. In fact, the final machines of all problems except
problem 1, 3 and 7, need to be generalized.

We define the generality of a machine in terms of its simplicity. The simplicity of a machine is
determined by the number of states the machine has, and if two machines have the same number of
states, a machine with fewer arrows and final states is simpler.

Our task is to simplify the machines we have obtained in the previous chapter, so that the machines
become the simplest or the most general . We call this task simplification of finite automata, and it
can be also done by using a hill-climbing method.

3.1 Minimization

Before we simplify the final machine of the previous experiment, we first remove any useless arrows
and states, using a Minimization Algorithm (see, for example, [Hopcroft 79]). We show the result of
the minimization in figure 3-1. Note that even after minimization, all problems except 1, 3 and 7 still
need to be generalized. .
Figure 3-1: Minimized Final Machine

Problem Minimized Machine
Pt ((0 t 1))
PZ ((0 4 1)(3 00)(80 1)(180)(220)(586 1))
P3 ((121)(311)(400)(3 41))
P4 ((4 1 1)(331)(120)(611)(031))
P6 ((6 31)(360)(210)(540)(010)(140))
P8 ((86 3 1)(683 1)(160)(260)(420)(410))
P7 ((L21)(321)(341)(041))
Pl1- ((3 2 0)(5 1 0)(3 8 1)(3 4 1)(0 4 1))
P2- ((6 60)(231)(200)(251)(421)(141))
P3- ((3860)(465 1)(140)(240)(67 1)(230)(as 1))
P4- ((4 70)(221)(260)(610)(200)(7 41)(130))
P6- ((4 3 0)(660)(621)(161)(311)(841))
P6- ((Z 4 0)(4 1 1)(320)(251)(311))
P7- ((7 6 0)(4 2 0)(4 2 1)(4 3 1)(6 20)(20 0)(7 6 0))

3.2 Simplification Algorithm

The algorithm for simpiification is similar to the algorithm described in the previous chapter. The
major differences are as follows: (1) the evaluation function E(M) returns a higher value if the
machine M is simpler; (2) it M does not accept some strings in the rioht-list, or does accept some

23




SIMPLIFICATION SF FIIUTE AUTQMATA

strings in the wrong-list, E(M) returns minus infinity; (3) the algorithm starts with the minimized final
machine of the previous experiment instead of a random maching; (4) whenever a "useless state” (i.e.
a non-final state with neither 0-arrow nor 1-arrow) is found, delete it.

3.3 Results

A sample trace of problem 2- is shown in figure 3-2. Each line corresponds to current generation
M., and the right-most number is the cumulative number of steps. The final machine of this trace is the
desired simplest machine.

The final machines of all 14 probiems are shown in figure 3-3. We see that some problems couid
not be simplified compietely within the given time, probably because the search was climbing a local
hiil.

3.4 Discussion

3.4.1 Hill-Climbing vs. Exhaustive Search

We compare our method with an exhaustive search. The exhaustive search enumerates all
machines in the order of simplicity, and the first machine that accepts all strings in the right-list but
none in the wrong-list is considered the simplest machine. Thus we can calculate the expected
nun;bef of steps until the exhaustive search finds the desired machine® . The result is shown in figure
3-4.

ﬂanummmdmdmmmm. ﬂmﬂne«mctedmmbadmmsnh:
Sn-[2'-"0"40‘]+(Un/(2x(n-1)|)]. '
mu]bmmmuummhmmjm,mu.

Y- G+ 152"

6ﬂmrmlnbarotsﬁamu:n‘m:htll»climbmqinthisﬁgwreismesumt.a“henumtserofs«matc'.ucv.mstructtheamme machine and
the number of stepa to simplity it into the simplest machine.
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SIMPLIFICATION OF FINITE AUTOMATA
Figure 3-2: Sample Trace of Problem 2-
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Figure 3-4: The Number of Stzps to obtain the simpizst machine

Problem Hi11-Climbing Exhaustive-Search
P1 98 4
P2 141 170
P3 2062 553933
P4 610 8624
P5 1810 553933
P8 461 8524
P7 208 653933
P1- 445 170
P2- 1080 8624
P3- 2302 465693884
P4- - 563933
P§- - 6563933
P&~ 930 8624
P7- - 466938384

3.4.2 Simplification from Trivial Machine

We have seen that our hill-climbing works rather successfully, aithough some probiems could not
be simplified completely. Our method consists of 2 parts, the construction process (chapter 2) and
the simplification process (chapter 3). That is, we first construct a machine with 8 states and then
simplify it. One might suppose that we couid get the simpiest machine using only the construction
process, by choosing the number of states sufficiently small. Unfortunately, in the previous chapter,
we showed that the number of states shouid be reasonably large, and we cannot do that. One might
also notice that we would not need any construction process, because we can easily construct a
trivial machine, which accepts exactly all strings in the right-list but nothing else. Figure 3-6 is an
example of the trivial machine. In this section, we describe some experiments to try to simplify from
the trivial machine. We shall see that to simplify from the trivial machine is much less effective than
our construction-simplification method. The result of the experiments is shown in figure 3-7. When
we compare figure 3-3 and figure 3-7, it is obvious that our construction-simplification method is more
effective than the second method.
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Figure 3-7: Resuit of Simplification from Trivial Machine

i

[P1] ((0 1 1)) 2 107

(P2} ((0 2 1)(1 0 0)) 3 132

[P3] ((121)(54 1)(3 6 0)(7 8 1)(60 0)(02 1)(3 0 1)(09 1)(10 0 0)
(0 11 0)(0 12 0)(13 0 °0)(14 0 0)(2 0 0)) 24 <NOT-SIMPLEST>

[P4] ((3 21)(16 1)(42 1)(0 5 1)(0 2 0)) 12 <NOT-SIMPLEST>

[P6] ((3 2 1)(4 1 0)(1 4 0)(2 3 0)) 9 1879

[P6] ((3 2 1)(1 3 0)(2 1 0)) 7 1801

[P7] ((3 2 1)(4 6 1)(t 6 1)(0 0 1)(1 2 1)(3 3 0)) 16 <NOT-SIMPLEST>

[P1=] ((2 1 0)(2 2 1)) & 446

(P2-] ((3 2 0)(1 3 1)(3 3 1)) 8 1249

[P3-] ((1 2 0)(3 1 0)(5 4 1)(4 3 1)(3 6 0)) 12 <NOT-SIMPLEST>

[P4-] ((3 1 0)(2 2 1)(4 1 0)(2 1 0)) 9 3692

[P6-] ((3 2 0)(2 4 1)(1 6 1)(0 6 0)(8 0 1)(7 0 1)(0 10 1)(9 0 0)(0 3 0)
(0 11 0)(0 12 0)(0 13 0)(0 14 0)(0 9 0)) 22 <NOT-SIMPLEST>

[P6-] ((3 2 0)(56 3 1)(4 1 1)(1 0 1)(1 2 0)) 12 <NOT-SIMPLEST>

[P7-] ((3 7 0)(2 2 1)(4 7 0)(0 6 0)(0 6 0)(7 0 0)(8 0 0)(2 8 0)) 13
<NOT-SIMPLEST>
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PECOLSTHUCTIC!! OF FUHHTE AUTOIATA
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4. He-cong

ructicin of Finitc Automeata

So far, we have described a method for constructing the simplest Finite Automaton from given
examples. Suppose we have solved one problem, and are.given another problem whose examples
are very close to the previous one. To solve this new problem starting from the beginning is rather
tedious because we already have some information about the solution. In this chapter, we describe
how to re-construct a finite automaton if the right-list and/or wrong-list is slightly altered.

After the sample lists are altered, if the machine still accepts all strings in the right-list but no strings
in the wrong-list, the previous soiution is the new solution. If the machine does not accept some
strings in the right-list, and/or does accept some strings 1 the wrong-list, we refer to such strings as
inconsistent strings. Whenever we find an inconsistent string in the right-list, we call a procedure,
add-trivially, which revises the machine, so that it accepts all strings in the right-list. On the other
hand, whenever we find an inconsistent string in the wrong-list, we call a procedure,
cut-wrong-arrow, which revises the machine, so that it accepts no string in the wrong-list. Although
after calling add-triviaily there is no inconsistent string in the right-list, there may now be another
inconsistent string(s) in the wrong-list. In this case, we call cut-wrong-arrow. Similarly, aithough after
calling cut-wrong-arrow there is no inconsistent string in the wrong-list, there may now be another
inconsistent string(s) in the right-list. In this case, we call add-trivially. Thus, we call add-trivially and
cut-wrong-arrow again and again.

We first define add-trivially and cut-wrong-arrow, and then we show that our process always
terminates, producing the desired machine that accepts all strings in the right-list but no string in the
wrong-list, although the machine is not the simplest.

4.1 Add-trivially

The purpose of this add-triviaily routine is to accept an inconsistent string in the right-list, no matter
how many strings in the wrong-list the machine comes to accept. We first define trivia/ state and
trivial path, then finaily we define add-trivially.

Definition: In each machine, we consider that there is a special arrow named starting arrow, which
always points to the initial state q,.

Definition: If more than one arrow (including the starting arrow and the one from q itself) point to
a state q, then q is called a non-trivial state. If only one arrow points to q, then q is called a trivia/
state.

Definition: A sequence of states qim.q‘(z),.....qi(k) is called a path of a string a,.a,...a, ., where
each a; isin {1,0}, iff for all jsuch that 1 < j < k-1, if a = 0 then Ai(i) = i(j+ 1) else B“” = i(j+1).

Definition: A sequence of states qim.q“z)......qi(k is called a trivial patn, iff this sequence is a path,
and for all jsuch that 2 < j < k, %) is a trivial state, and for all j such that 2 < j < k-1, ;) is a
non-final state, and Q) is a final state. This path accepts only one string.

That the machine M does not accept a string a,,a a, means either of the followings:

greeees
1. There is a path of a,,a,,....,a,, but the last state is a non-final state.

2. There exists an integer j such that there is a path of Qs y s but the last state of this
path does not have an a.-arrow.

where each a is in {1,0}.




TECONMNSTRUCTIGN OF FULTE AUTOL ATA

For each inconsistznt string in the right-list. add-trivially works 2as foilows: 1n cace 1. let the last
non-final statz be the final state: in case 2. create a trivial puth from the lust state so that the machine
accepts the whole string.

It is easy to show that after calling add-trivially the machine accepts all strings in the right-list.
However, it also may come to accept some strings in the wrong-list, as we mentioned before. In this
case, we call cut-wrong-arrow defined below.

4.2 Cut-wrong-arrow

If there are some inconsistent strings in the wrong-list (i.e. the machine does accept the strings), we
call cut-wrong-arrow so that the machine comes to accept none of these strings, no matter how many
strings in the right-list the machine comes to reject.

For each inconsistent string in the wrong-list, cut-wrong-arrow works as follows: Let
i@ ik be a path of the string w that should not be accepted. To relect w, one of the arrows
o?( t}ve path must be cut. Let q, , be one of the non-trivial states in the path Cut the arrow from
to % if q, (initial state) |s the only non-trivial state, then let the machine M be ((0 0 0)),

w‘nc does not accept anything.

it is easy to show that after calling cut-wrong-arrow all strings in the wrong-list are rejected,
although the machine may come to reject some strings in the right-list. In this case, we call add-
triviaily.

4.3 Termination

In this section, we show that the algorithm above always terminates.
Theorem: The aigorithm above aiways terminates.
Proof: Consider the following partial ordering:

non-triviality of state: the number of arrows which point to the state.

non-triviality of machine: total of non-triviality of all non-trivial states.
We denote this by n£(M), where M is a machine. Note that nZ(M) = O, iff M is a trivial machine.

Let M' be the resuit of adding-trivially to M, then RL(M’) = nE(M), because add-trivially adds only a
trivial path. Next, let M' be a result of cut-wrong-arrow over M, then nt(M’') < nt(M), because we
always cut the arrow that points to a non-trivial state q, and non-triviality of the state q decreases, and
therefore non-triviality of machine also decreases. Thus, we cannot have an infinite loop, add-
triviaily, cut-wrong-arrow, add-trivially, cut-wrong-arrow, add-trivially,..... , because nt(M) always
decreases but nt(M) >> 0. <end of proof>

7Such a non-trivial state always exists it the original machine has been simplified. and throughout this paper. we deal only
with the re-construction of a simplified machine.
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Finally. we describe an actual system. RR. that learns to construct finite automata. RR is running in
MACLISP either on CMU-20C or CMU-10A.

RR has a machine (finite automaton) and each time RR is given a string in (1 + 0)" as its input, RR
runs the machine with the string given. If the machine accepts the string, RR answers ACCEPT,
otherwise it answers REJECT. At the very beginning, RR has a null machine. which accepts nothing,
and therefore RR does not accept any string at all. Now, consider some regular set R that we want to
teach to RR. When we input a string s to RR, it should acceptsifand onlyifsisin R. lf sinnotin R,
RR shouid reject it. Whenever RR answers incorrectly, we sco/d it. When RR answers correctly and
we think this example is important® , we encourage it. When RR is scolded or encouraged, it
memorizes the fact that the string must be accepted or rejected, that is, if it is the case that the string
must be accepted. RR puts it into right-list, which is a set of strings that must be accepted, and
similarly, if the string must be rejected, RR puts it into wrong-list. After memorizing, RR re-constructs®
the machine in the way described in chapter 4, so that it accepts all strings in the right-list and none
in the wrong-list. After each re-construction, RR simplifies the machine in the way described in
chapter 3.

Figure 5-1 shows a flow chart of the RR system

%dothomwmnmmnmmwmuy.

90niy when it has been scoided.
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Figure 5-1:

Top Levet of RR System
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5.1 FHow to execute the RR system

In this section. we describe how to execute the RR system. and in the following section, we show
several sampie runs.

5.1.1 Getting Started

RR runs in MACLISP either on CMUC or CMUA. in MACLISP, type
{slurp <tommy> rr) (CMUC)

{(slurp c410mt80 rr) (CMUA).
And call function:
(main) (both CMUA and CMUC).
Then you get prompt ">>>" and are in the RR system.

5.1.2 How to teach

o Giving example: The format for giving an exampie to RR is the following:
{ 0-or-1 <space> O-or-1<{space> ...... <space> O-or-1)
Typical input is:
(1010101 0)
RR then outputs the answer, either ACCEPTED or REJECTED.
e Scolding: To scold for a wrong answer, input n right after the wrong answer.
M
e Encouraging: To encourage RR, input y right after the answer.
Ny

o Anyway-accept: If the example string starts with +, this means : if this string is accepted
then encourage; otherwise scold. Typical input is:

»MW(+101001)

e Anyway-reject: If the example string starts with -, this means: if this string is rejected
then encourage; otherwise scold. A typical input is: )

»(-00010010)

To give the null string, use () or (+) or (=).

5.1.3 Other Commands

o r: show present right-list.
o w: show present wrong-list.
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e m: show present machine.
e 1. show lastinput.

e o: show order of memorized strings.

o t: show runtime of each step and total runtime.

e 7: show every thing above.
e new: initialize.

o *G: quit.

5.2 Sample Runs

5.2.1 Sample Run 1:

As the simpiest example, let us teach the regular set 1° to RR. The desired machine is:

((0 11)).

The underlined strings are user’s inputs, and the ltalic strings are comments.

[PHOTO: Recording initiated Thu 4-Mar-82 2:38PM]

TOPS-20 Command processor 4(723)-7

@1isp
{Keeping]
MacLisp for TOMMY

(<TOMMY> RR FASL)
(main)

> new

> Q
REJECTED
>0
MODIFYING *
»> 1)
REJECTED
»>n
MOODIFYING ¢*

>»> (1 11)
ACCEPTED

> (0)
REJECTED

»>(10111)
REJECTED

»>(11111111111111)
ACCEPTED

»>r 2

RIGHT-LIST

tnitialization.

Input null string as an example.

The null string was rejected.

Since null should be accepted, scold it.
it is trying to modity.

Next, input (1).

(1) was rejected.

Since (1) should be accepted, scold it.

it is moditying itself.

Next try (1 11).

This was accepted, all right, no scolding.
Next try (0). which should not be accepted.
This was rejected., all right, no scolding.

Next try (1 0 11 1), which should not be accepted.

Rejected, all right, no scolding.
Next try this.
Accepted, all right, it shouid be accepted.

Maybe we've got 1°, let us look inside the machine.
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(NIL (1)) Rignt-list contents null string and (1).
WRCHG-LIST

NIL Wrong-list contents nothing.
PRESENT-MACHINE

((0 1 1)) Present machine is, yes, 1°.
LAST-INPUT

(+111111121111111)

ORDER :
((+) (+ 1)) 4 We taught it in this order. + means "in right-list".
TIME ’

(0.019 0.048) Time spent to teach (+) and (+ 1).
TOTALTIME .
(0.087) Total time in seconds to learn 1°.

5.2.2 Sampie Run 2:

Let us try to teach a harder automaton, problem 4. This regular set is:

The difference between the number of 0's and the number of 1's 1is
divisible by 3.

For instance, the string (1 0 1 1 1) should be accepted because 4-1=3 is divisible by 3. The
desired machine is as follows: ’

((3 2 1)(1 3 0)(2 1 0)).

> new
> ) First, let us try null, which should be accepted.
REJECTED )

> No, null should be accepted.

MODIFYING *

a Show the present machine.

{((0 0 1)) This machine accepts nothing but a null string.
»> (111)

REJECTED

> No, this should be accepted.

MODIFYING ®°

> s i
((0 1 1)) This machine is 1°. ;
»> 1) ’ :
ACCEPTED ;
> a No, this should be rejected. ' ;
MODIFYING °* i
»> n ¢
((021) (030) (010)) This machine is (11 1)°. :
»>(111111) !
ACCEPTED All right, it should be accepted. )
> (3)

REJECTED

>y Yes, it should be rejected. Particularly, encourage it.

REJECTED
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>> (0.0 0)
REJECTED

>n No. this should be accepted.
MODIFYING **

>>> (0 00000)
ACCEPTED All right.

>> (0 9)

REJECTED All right.

>

((421) (030) (010) (5600) (10 0)) (111 + 000)°.
> (1.0)

REJECTED

>n No, this should be accepted.
MODIFYING ¢*°*

> nm

((421) (130) (0010) (20 0))

>> (0 1)

REJECTED

> No, this should be accepted.
MODIFYING *e¢

D

((321) (130) (210)) Now, we get the desired machine.

>
REJECTED Ok.

>

ACCEPTED Ok.

» 2

RIGHT-LIST

(NIL (11 1) (0 0 0) (1 0) (0 1))

WRONG-LIST

((1) (9))

PRESENT-MACHINE

((321) (130) (210))

LAST-INPUT
(+*110000100100120000011)

ORDER

((#) (+111) (-1) (-0)(+000) (+10) (+01))
TINE :

(0.014 0.087 0.117 -0.01 0.364 0.564 1.413)

TOTALTINE

(2.549)

8.2.3 Sampie Run 3:

The total run time to learn the desired machine depends very much on the order of input examples.

We now try the previous sample again but with a different order.

> new
» )
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REJECTED
> n
MODIFYING *
> m

((00 1))

>»> (1.0)
REJECTED

>

MODIFYING **

> (01

REJECTED

>»>n

MODIFYING **

D> nm

((321) (100) (010)) Present machine is (10 + 01)°.

>

REJECTED

>na

MODIFYING ®°*

M>np

((321) (130) (010)) (10 + 01 + 111)°

> (1 1) '
REJECTED

>

ACCEPTED

>»> (00 0)

REJECTED

»>na

MODIFYING ®*¢

> n

((321)(130) (210)) This is the desired machine.
D

ACCEPTED

>»D

REJECTED

1

RIGHT-LIST

(NIL (1 0) (0 1) (111) (000))
WRONG-LIST :

NIL

PRESENT-MACHINE

((321)(130)(210))

LAST-INPUT
(-101010100000001111011111)
ORDER

((+) (+10) (+01) (+111) (+000))
TIME

(0.014 0.088 0.068 0.21 0.878)

TOTALTIME

(1.282) The total time is much shorter. A
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2.3 Sample Run 4:

VWe nevt try problem 3. which is very hard. This reguiar set is:

Any strings without odd number of consecutive 0's AFTER odd number
of consscutive 1's.

>>> new

D> (#)(+ 1 )(+ 0)(- 1 0)(+ 0 1)(+ 1 1)(+ 0 0)}(- 1 0 1)(- 0 1 0)(+ 1 O 0)
(+110)(+ 11 1)(+000)(-1010)(-411120)(-1011)(- 41 0001)
{(-111010)(-10010020)(-1111120200)

(- 0111
(+1100
MODIFYING *
D
MODIFYING **

>

MODIFYING **

>

MODIFYING o

>

ACCEPTED

>

MODIFYING ¢

>

ACCEPTED

>

REJECTED

>

REJECTED

>

MODIFYING **

>

ACCEPTED

>

ACCEPTED

>

ACCEPTED

>

REJECTED

>

REJECTED

>

REJECTED

>

mIFYI”G (I I TT 1T 1]
>

REJECTED

>

mDIFYI“G csoobsotoORe
>

1)(- 1101110011 0)
100001)(+1111011000310011100)

1
00110
00011

s 4
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"€ JECTED
>

REJECTED

>>>

REJECTED

>

MODIFYING **

>

MODIFYING *esee

»> 1

RIGHT-LIST

(NIL(1)(0){0 1)(2 1)(0 0)(1 0 0)(1 1 0)(111)(000)(1 1000001
1100001)(111101100010011100))

WRONG-LIST

((10)(10 1)(01 0)(1 10)(2110)(1011)(20001)(211010)
1001000)(111110600)(011100121101)(11011100110))
PRESENT-MACHINE :
((121)(311)(400)(341)) This is the desired machine.

LAST-INPUT

NIL

ORDER

((#)(+ 1)(+ 0)(-20)(+ 0 1)(+11)(+00)(-101)(-010)+100)(
+110)(+111)(+000)(-12010)(-1110)(-1011)(-1000 1)(
10)(-1001000)(-1112121000)(-0111001101)(-
100110)(+1100000112100001)(+111101100
110 0))

14 0.042 0.08 0.078 8.0E-3 0.116 8.0E-3 0.013 0.01
8 0E-3 9.0E-3 0.01 0 1 2.066 0.012 3.686 0.014 0.01

- o

1 0.357 0.011 0.012
8 0.02 0.283 3.736)

TOTALTIME
(10.282)

5.2.5 Sample Run §:

We now try the previous run again with a more effective ordering.

>> new
> (- 10)(-10010)(-1000)(~100110)(+m(+0)m+0 1)m
+ + + + +

REJECTED

>>>

REJECTED

»>

REJECTED

>>>

REJECTED

>>>

MODIFYING *

38
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>

((0 0 1))

b

MODIFYING **

»D>

((101))

D

MODIFYING *

>

((121) (00 1))

»D>

MODIFYING **

>»>

((121) (011))

>»>

MODIFYING *

>»>

((121) (311) (400) (001))

>

ACCEPTED

>

((121) (311) (400) (001))

»>

MODIFYING **

>

((121) (311) (400) (041))

>

MODIFYING °***

> m

((121) (311) (400) (3 41))

» 1

RIGHT-LIST

(NIL (0) (0 1) (01 10) (100) (11) (2001)(10000))
WRONG-LIST

((10)(100120)(2000) (100110))
PRESENT-MACHINE :
((121)(311) (400) (341)) This is the desired machine.
LAST-INPUT

NIL

ORDER
((-10)(-120010)(-1000)(-100110)(+)(+0)(+01)(+0110)
(*100)(+11)(+1001)(+10000))
TIME

( 9.0E-3 9.0E-3 0.017 9.0E-3 0.016 0.047 0.029 0.091 0.042 0.013 0.38 0.342)

TOTALTIME
(0.89) This is much faster than the previous run.
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5.3 Discussion

V/e saw in the previous section that the run-time of sample run 3 is much shorter than the run-time
of sampie run 2. and also sample run £ is much faster than sample run 4. Thus. RR is very sensitive to
what is given as examples, and how these are ordered. In this section, we are interested in how to
teach RR effectively.

First. we consider the worst case and the best case of re-construction. In the worst case, RR calls
add-trivially and cut-wrong-arrow again and again, and eventually its machine becomes the trivial
machine.’® We know that a trivial machine can be constructed easily without such a special
technique as re-construction.

On the other hand. the best case is that RR calls add-trivially once but no further cut-wrong-arrow.
Thus. in order to “teach” the RR system effectively, we have to choose the examples nicely so that
RR can re-construct its machine only by add-trivially. For instance, the example inputs of sampie run
3 and sample run 5 are so chosen, and their run-time is in fact very short. Also, to avoid calling
cut-wrong-arrow, we had better give the negative exampies earlier.

1OA trivial machine is a machine that accepts exactly all strings in the right-list and nothing eise. See chapter 3.
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5. Concluding Ramark

Qur new approach to construction of finite automata from given examples has been shown 10 work
very nicely. despite the fact that its algorithm is quite simple. in chapter 2. we saw that construction of
finite automata with n states can be nicely done using hill-climbing if n is a reasonable number. In
chapter 3. we saw that we could often simplify the resulting machine of chapter 2 also using hill-
climbing. although some problems couid not be solved. In chapter 4, we discussed how to utilize past
work, if a given probiem is very close to the past problem. The RR system, which uses these
techniques. was introduced and described in chapter 5. Finally, we enumerate several extensions of
this work.

o Our hill-climbing algorithm sometimes climbs a local hill, and therefore fails to find a
correct solution. There are several ways to avoid climbing a local hill, and one of them is
adaptive search [Cavicchio 70}, [Holland 75]). Adaptive search can be considered as a
powerful version of hill-climbing. There are not only one "current generation”, but
usually a population of 20-30. The best five or so are chosen as winners (the others are
discarded) and 15-2*; slightly-altered copies of them are made as the new population.
Altering way is not only mutation, but also cross-over (mix two and produce one), inverse
(inverse a certain part of one) ,'* and so on. This approach becomes really powerful if
parallel computaiion is available.

o Our finite automata have been deterministic, that is, arrows either exist or do not exist.
The operator create-arrow or delete-arrow often makes too much difference to climb hill
smoothly. The idea is to let our finite automata be probabilistic, that is, an arrow exists
partially with a real number between 0.0 and 1.0, which indicates a probability of
existence of the arrow. (See [Rabin 63].) In this case, we increase or decrease the real
numbers, rather than create or delete an arrow. This method might help to climb hills
smoothly.

e Qur mutation function might be modified so that the mutation does not take place
completely randomly, but somewhat "cleverly”. For instance, if the machine accepts a
string in the wrong-list, then delete-arrow or decrease-prob-of-arrow should take place
more often on this wrong path than on others. Our idea becomes more concrete if we
deal with the probabilistic automata described in the previous paragraph. If the machine
somehow accepts a string in the wrong-list, then we should decrease all probabilities of
the arrows on this path. If the machine accepts a string in the right-list, we increase the
probabilities on this path, etc.

e Qur probiem domain in this paper has been reguiar sets. It might be possible to extend it
to context-free sets by constructing Push-Down Automata (finite automata with stack, see
[Hopcroft 79)). Since construction of Push-Down Automata must be much harder than
finite automata, we would definitely need techniques just listed.

e A finite automaton can be viewed as a program that takes a string as its argument and
outputs TRUE or FALSE. Therefore we might be abie somehow to apply our method to
automatic programming from specification by examples.

"The cross-over operator acts on a pair of strings by breaking each string at some point and rejoining the subsegments
from ditterent strings. The inversion operator makes two breaks, inverts the inner segment and then rejoin the string.

41




RESTL L CES ANIDENL LD LT APy

.

Reierencces and Ciblicgrapay

[Biermann 70]

[Buchanan 76]

[Cavicchio 70}

[Elschiager 79)

[Feldman 67)]

[Feldman 69)

[Fogel 68}

[Gil 62]

(Goid 74]

{Hayes-roth 77)

[Holland 75)

Biermann, A. W. and Feldman, J. A,
On the Synthesis of Finite-State Acceptors.
Al Memo 114, Stanford University, April, 1970.

Buchanan. B. G.; Smith, D. H.; White, W. C.; Gritter, R. J.; Feigenbaum, E. A_;

Lederberg, J.; and Djerassi, C.

Automatic rule formation in mass spectrometry by means of the Meta-DENDRAL
program.

Journal of the American Chemical Society 98(6168), 1976.

Cavicchio, D. J.
Adaptive Search Using Simulated Evolution.
PhD thesis, University of Michigan, 1970.

Elschlager, R. and Phillips, J.

Automatic Programming.

Report STAN-CS-79-758, Computer Science Department, Stanford University,
August, 1979.

Feldman, J. A.
First Thoughts on Grammatical Inference.
Al Memo 58, Stanford Universy, Aug, 1967.

Feldman, J. A.; Gips, J.; Horning, J. J.; Reder, S.
Grammatical Complexity and inference.
Al Memo CS125, Stanford Universy, June, 1969.

Fogel, L. J.; Owens, A. J. and Walish, M. J,
Artificial Intelligence Through Simulated Evolution.
Wiley, New York, 1966.

Gill, A.
Introduction to the Theory of Finite-State Machines.
Mcgraw-Hill Book Company, Inc., New York, 1962,

Gold,E. M.
Complexity of automaton identification from given data.
1974.

Hayes-Roth, F. and McDermott, J.
Knowiledge acquisition from structural descriptions.
In Proceeding of IJCAI-5, pages 356-362. 1977.

Holland, J. H.
Adaptation in Natural and Artificial Systems.
The University of Michigan Press, 1975.

42




—

-

[Hopcroft 79]

[Hunt 66}

[Langley 81a]

[Langley 81b]

[Lindsay 68)

[London 64]

[Michalski 73]

[Rabin 63]

[Tomita 82]

[Vere 75]

[Winston 70]

REFERTIICES AND BIBLIOGAAPHY

Hopcrofit. J. E. and Ullman, J. D.
Introduciion to Automata Theory, Languages, and Computation.
Addison-Wesiey, 1979.

Hunt, E.. Marin. J.; Stone, P.
Experiments in induction.
Academic Press, New York, 19686.

Langley, P., Bradshaw, G. L., and Simon, H. A.
Rediscovering Chemistry With BACON.4.
CIP Working Paper 423, Carnegie-Mellon University, June, 1981.

Langley, P., Bradshaw, G. L., and Simon, H. A.
The Discovery of Conservation Laws.
CIP Working Paper 430, Carnegie-Meilon University, June, 1981.

Lindsay, R. K.
Artificial Evolution of Intelligence.
Contemporary Psychology 13(3), March, 1968.

London, R.

A Computer Program for Discovering and Proving Sequential Recognition Rules for
BNF Grammers.

Technical Report, Camegie Tech, May, 1964.

Michalski, R. S.
Discovering classification rules using variable-valued logic system VL1.
In Proceeding of IJCAI-3, pages 162-172. 1973.

Rabin, M. O.
Probabilistic automata.
Inform. Control 6:230-245, 1963.

Tomita, M.

Dynamic Canstruction of Finite Automata From Examples Using Hill-Climbing.

In Proceedings of 4-th Annual Conference of the Cognitive Science Society.
Cognitive Science Society, August, 1982,

Vere, S. A.
induction of concepts in the predicate calculus.
In Proceeding of IJCAI-4, pages 281-287. 1975.

Winston, P. H.
Learning structural descriptions from examples.
PhD thesis, MIT, 1970.

43




